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Ordering in random Ising magnets 

0 Heinonent and P L Taylor$ 
t Lkpanmenl of Physics, University of Central Florida Orlando, FL 32816. USA 
t Depanmenl of Physics. Case Westem Reserve University, Cleveland. OH 44106. USA 

Received 20 October 1993 

Abstract We extend a functional recursion melhod for random king chains io a system in 
which random interchain interactions are lreated in a selfconsisten1 field approximation. This 
extension is applied IO a random-bond binary king system. The phase diagram is obtained as a 
funclion of bond svengihs and bond concenmiions. 

During the last 15 years, considerable effort has been spent on the understanding of random 
magnetic systems. Although much progress has been made, results in some of these areas, 
notably spin-glasses, are still controversial. This is because of the inherent difficulty of 
performing statistical mechanics calculations on general disordered systems. 

An important early attempt at this problem was the work of Hone and co-workers [ I ] ,  
who studied an king system containing small concentrations of non-magnetic or weakly 
coupled impurities. In that paper the authors used a transfer-matrix approach to evaluate 
the correlation functions for a chain of spins, and then used linear response theory to find 
the effect of a mean-field perturbation. The principal weakness of this approach lies in 
the fact that the method used to evaluate the correlation functions becomes invalid in the 
presence of an applied field, and becomes equivalent to consideration of an ordered chain. 
That is to say, the transfer matrices all commute in the absence of an applied field, and can 
be redistributed in blocks, but do not commute when an applied field destroys the symmetry 
between up and down spins. 

More recent progress in the study of the random-field Ising system includes a replica- 
trick approach [Z] or a functional recursion method to average over the random field. In 
particular, in an important paper Bruinsma and Aeppli [3] applied to the random-field 
king chain a functional recursion method of the type first used by Fan and McCoy 
141 to study random-bond Ising chains. Bruinsma and Aeppli [3] showed that the spin 
probability distribution has a multi-fractal structure, and found a crossover line in the phase 
diagram corresponding to the onset of frustration. More recently, Maritan and co-workers 
[5] investigated a three-dimensional random-field king system with spin-spin interactions 
treated in the mean-field approximation. They argued that the phase diagram of such a 
system depends crucially on whether the distribution of random fields is symmetric or not 
The one-dimensional random-hod king chain has also been investigated Gytirgyi and 
Rujh  161 applied a functional recursion method and found that this system too has a fractal 
structure in the probability density of the magnetization, while Tanaka and co-workers [7] 
studied free-energy fluctuations. In the present paper, we extend the functional recursion 
method to include the random coupling between disordered Ising chains within a self- 
consistent mean-field approximation. We have applied this extension to a three-dimensional 
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random-bond binary Ising system and obtained the phase diagram as a function of bond 
strengths and bond concentrations. 

0 Heinonen and P L Taylor 

The system we have studied is defined by the Hamiltonian 

Here, U,,,  is an king spin on site j on chain i ,  ui,, = f l ;  (i, i’) means that the summation 
extends over near-neighbour chains i and i’, and the coupling constants J;,j and J w , ~  are 
distributed according to the same distribution p(J).  In what follows, we will take this 
distribution to be p ( J )  = C A ~ ( J  - J A )  + (1  - C A ) ~ ( J  - J B ) .  The motivation for this 
choice comes from certain random copolymers, such as poly @-chloroxylelene) [8 ] ,  in 
which there can be two types of monomers, A and B, distributed at random but with fixed 
average concentrations CA and CB = 1 - CA. Near-neighbour monomers can assume two 
inequivalent relative orientations, and in a first approximation one considers only two bond 
types, defined by the two near-neighbour monomers, and characterized by coupling constants 
JA and JB.  Equivalently, (1) with this choice of p ( J )  is a model of a random-bond binary 
Ising magnet. 

We consider systems in which the interchain interactions are weaker than the intrachain 
interactions by a factor y c 1. In this case, it is reasonable to treat the interchain interactions 
in a mean-field approximation, and we replace the Hamiltonian ( I )  by the approximation 

Here the double average m is the thermal average (U;, ,)  of u,,j for a particular chemical 
%mcture, averaged over all disordered structures, z is the in-plane coordination number, and 
Ji . j  is distributed according to the distribution p ( J ) .  This mean-field approximation leads 
to an effective single-chain Hamiltonian 

-_ 
The effective field hj at site j is given by hj  = z y J j ( u )  (we have dropped the chain index 
i for ease of notation). The effective field hj is then a random variable with the distribution 
p(h) ,  which in our case is p ( h )  = CA6(h - J A Z ~ ~ )  + ( I  - CA)8(h - J ~ z y o ) .  We will 
generalize the functional recursion method [31 to allow us to obtain the magnetization 
and free energy F averaged over disorder of the single-chain Hamiltonian (3) as a function 
of temperature T, concentration CA and the ratio J B I J A  of the coupling constants. From 
the free energy, we can then obtain the entropy S and specific heat C. 

The transfer matrix relating the partition function for a chain with N + 1 spins, 
Z N + I ( q V + l ) ,  to that of a chain with N spins is 

(4) 

By introducing the polar notation ZN+I(UN+~ = 1) = i -N+ICOS6N+]  and ZN+I(CT”+I = 
- I )  = rN+I sinBN+I we can write 

(5) 

1 
h t l  (:pn”::::) = TNt1.N (:::$) 

ePJv-fJh“+, e-PJv+PhN+\ 
e - P I N - E h N t i  ePJ.+Phrrri ‘ ( TN+I.N = 

with hN+I  = T N + I / ~ N ,  SO that 
A%+] = 2e-’ph~+1 cosh 28 Jw cos2 6 N  + 2e2flh~+l cosh 2 p h ~ + 1  sin’ 6N + 2 sin 26N. 

(6) 
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From (5) we can derive the recursion relation between ZN = tan& and ZN+I 5 tan&+l: 

This recursion relation allows us to find the probability distribution P(6') of the eigenvalues 
I (@.  From the recursion relation (7). we obtain the result that the integrated probability 
distribution W(e) ,  defined by 

The magnetization distribution is obtained from the probability distribution P(B) and the 
distributions p(h)  and p ( J )  as 

Here, Tlz(h, J )  and Tzl(h, J )  are the off-diagonal elements of the transfer matrices: 

Ttz(h. J )  = e-BJcph T21(h. J) =e-pJ-ph. (11) 

(U) = o(e)P(e)de.  (12) 

The average magnetization is then given by m: 
- J  
%A = 1 P(e)dO (13) 

p(J )p (h )P(B) ln ) . (B )dBdJdh+ tzy j  dJp(J)T;?r2 

Other quantities of interest are the EdwardeAnderson order parameter qEn 

and the mean-square disorder fluctuation  EA - ((0))'. Finally, the free energy averaged 
over disorder is 

The free energy can then be obtained by self-consistently solving (12) and (9). and 
thermodynamic functions, such as entropy and specific heat, can then be obtained from 
the free energy. 

We have obtained the free energy, m, entropy and specific heat for concentrations 
CA ranging from 1.0 to 0.2 and ranging from 0.9 to 0.257. For all these values of 
CA and JB,  there is an onset of ordering, defined by a temperature T, below which 

t Note thal our approach breaks down for JB/JA = 0 and kuge concentralions of CB, CB 2 0.25. In lhis case. 
it  predicts a finite critical temperature T, below which there is ordering. (However, the magnetization does not 
saturate to unity as the temperature is reduced.) nis appears to be inconsistent with the percolation threshold of 
0.25 for a simple cubic lattice. The likely source of this inconsistency is the neglect of intenhain fluctuations. 
which become imponanl near the percolation threshold. 
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Figure 1. Delail of how w decreases 
with increasing temperature. The critical 
temperature T,. indicated by the arrow. is 
defined as the temperature below w h i c k m  
behaves as IT - T.IS. Above &, (U) is 
small but non-zero for a “1 range of 
temperature. (?k offset in (a) from zero 
at higher temperatures is due to numerical 
MOTS.) The insert depics m2 as a function 
of temperature. For T ?. 0.9, bur below T,. 
the curve is a straight line (indicated by the 
broken line). which demonstrates ha1 p = 
112. 

J0/J,=0.25. C,=0.6 
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Figure 3. The mean-square disorder fluctuation qEA - (w)‘ is shown for Jg  fJ.4 = 0.25 and CA = 0.6. The 
critical temperature for his choice of parameters is 0.74 
JA/kB and is indicaled by the arrow. 

-a.o 
-0.0 0.2 0.1 0.e 0.8 L,O 

JJh 
Figure 2. The critical temperature Tc is plolted against 
coupling constant ratio for iy = 0.25 and for four 
different values of the concentration CA. CA = OS (t), 
CA = 0.6 (0). CA = 0.4 (x). and CA = 0.2 (0). 

behaves as IT - Tclfl with B = 1 for temperatures near, but smaller than, T, (see figure 1). 
At the temperature defined this way, there is also a discontinuity in the derivative of the 
entropy. The phase diagram defined by this Tc is depicted in figure 2. As the disorder 
increases, however, remains non-zero but small for a range of temperature above this 
critical temperature but below the critical temperature T,(O) of the pure (Cg = 0) system. 
The reason is that, for T < Tc(0), there are small regions of pure material. In each of these 
regions, the correlation grows to the size of the region as T + Tc(0). This gives rise to 
fluctuations in the magnetization density above the critical temperature T, (see figure 3(c)). 
Note that T, is defined by the way the magnetization density approaches zero as the 
temperature increases, even though the magnetization density does not vanish at Tc. The 
critical temperature defined this way is nevertheless well defined.) 

A measure of the disorder in the magnetization is given by the mean-square fluctuation 
qu\ - (m)*. For structurally disordered systems, q a  > ((o))2 for temperatures below 
T,. This difference vanishes rapidly as T approaches zero and m tends to unity. This 
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Figure 4. The integrated probability density 
W(B)  for the temperatures 7 = 0.2 Jhlka .  
T = 0.58 J A l k e ,  and 7 = 0.8 J A I ~ B .  Here, 
JBIJA = 0.25 and CA = 0.4. The critical 
temperamre for this choice of parameters is 0.52 
J d k s .  

is depicted in figure 3. Hence, in this range of temperature, there is a higher degree of 
magnetic order locally than is indicated by the average magnetization for the whole system. 
This may help to explain why the ferroelectric phase of some random copolymers, such as 
the copolymers of vinylidene fluoride and trifluoroethylene (VF&E), are more stable than 
those in the pure material. By mixing in a species with a stronger coupling, for example 
trifluoroethylene in VF2/F,E, one obtains a material that locally is ordered over a range of 
temperatures above the one at which the ferroelectric phase of the pure material becomes 
disordered. 

It is also of interest to study the general behaviour of the integrated probability 
distribution W ( 0 )  and the magnetization distribution .(e). We note the following general 
features. For ordered systems, W ( 0 )  is a step function located at the fixed point of the 
map (7). For disordered systems, W ( 0 )  approaches a step function at 0 = 1r/2 as T -+ 0 
and m approaches unity. At temperatures such that 0 < m c 1, "(0) is a non-trivial 
function. As the temperature increases from T = 0, W ( 0 )  is a function that is flat nearly 
everywhere, with a large number of discontinuities. At the widest plateau, W ( 0 )  = 6. 
As the temperature continues to increase, the widths of the plateaus shrink to zero, W(0)  
becomes continuous and finally approaches a single step-function at 0 = 0. This behaviour 
is shown in figure 4. The corresponding magnetization distributions are shown in figure 5. 
At low temperatures, the probability density is a sequence of delta functions, and so the 
magnetization distribution also consists of a sequence of delta functions. As the temperature 
increases, the distribution broadens and becomes smooth. Finally, at high temperatures the 
distribution approaches a single delta function. 

In conclusion, we have extended the functional recursion method to systems of 
disordered king chains in an approximation in which the random interchain couplings 
are treated in a self-consistent mean-field approximation. We have applied this extension 
to a random-bond binary Ising system and obtained the phase diagram of this system. As 
the structural disorder increases, there is still an onset of magnetic ordering in the system, 
manifested by a non-zero value of m, at a well defined temperature. The integrated 
probability distribution "(0) at low temperatures becomes highly non-analytic as the 
disorder increases. As the temperature is increased, W(0)  becomes smooth, and finally 
approaches a step function at 0 = 0. The mean-square fluctuation provides a - 
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Figum 5. The spin disuibution function a@) for (a) 
T = 0.2 I ~ / k a .  (b) T = 0.58 J ~ / k e ,  and (c) T = 0.8 
JhlkB. Here, J ~ J A  = 0.25 and CA = 0.4. In (c). the 
temperatun is above Tc. but there ax non-zero Rucluations oBo 0.76 0.7s - (1' in the magnetization. 
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measure of the magnetic disorder. For structurally disordered systems, - ((o))2 > 0 
over a range of temperature below Tc. 

We conclude by noting that the inherent difficulty in treating disordered Ising systems 
lies in the unavoidable complexity of the fractal nature of the distribution functions illustrated 
in figure 5. In an approach based on functional recursion, this complexity is treated exactly. 
Approaches based on the assumption that the transfer matrices commute do not predict this 
type of structure, and thus lead to results in qualitative and quantitative disagreement with 
the results presented hert. 
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